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Abstract—The Message Passing Interface (MPI) is a widely
used paradigm for distributed memory programming. Imple-
mentations of this interface are designed for good performance
rather than on usability extensions that enforce their correct
use. Runtime MPI usage error detection tools aid application
developers in the correct use of this interface. Since usage
errors can cause failures that lead to an application crash, it
is crucial that runtime error detection tools employ techniques
that allow them to finish all of their correctness checks. This
includes situations in which the application is interrupted by the
MPI library, due to an incorrect function call; and operating
system signals after fatal errors like division by zero or faulty
memory accesses. We present an approach that uses an alternative
tool communication means along with signal and error handling
capabilities. A study of the assumptions that enable this approach
details its applicability for different use cases and compares it to
less efficient schemes that rely on synchronous processing and/or
communication. Additionally, we enable bandwidth efficient com-
munication with a scalable propagation technique that raises the
awareness of an application crash within the tool. An application
study with the SPEC MPI2007 benchmark suite demonstrates
the applicability of our approach for up to 2,048 processes.
Overhead measurements underline that our application crash
handling increases the runtime of our runtime error detection
tool by only 4% in average.

I. INTRODUCTION

The Message Passing Interface (MPI) [1] provides a
portable and widely used library specification for parallel
programming on distributed memory systems in High Per-
formance Computing (HPC). The interface specification of
the widely implemented version 2.2 consists of 700 pages
already. This specification both defines the behavior of the
various functions of the interface as well as constraints and
preconditions for their intended use. The behavior of an MPI
implementation for cases where an application breaks any of
these constraints is undefined and represents a challenge for
the development of correct and portable applications. Tools
that reveal usage errors of MPI (defects) support efficient
development workflows. We develop MUST [2] as one such
tool that operates during the runtime of the application. The
tool detects wide ranges of MPI usage errors such as MPI

datatype matching violations, incorrect communication buffer
use, and deadlocks.

Figure 1 illustrates an MPI usage error that calls the
collective operation MPI_Reduce with four application pro-
cesses (ranks 0–3). The illustration leaves out any initialization
and finalization operations as well as function arguments that
are irrelevant for this error situation. In the scenario, all
collectives specify the same root rank, that is, all processes
consistently agree that rank 0 will retrieve the final result of the
reduction. However, rank 0 specifies a different datatype than
the other ranks, which violates the MPI type matching rules.
In practice—especially for larger communication payloads—
such defects can cause an application crash or trigger error
handling code within an MPI implementation or another soft-
ware component. We use the term failure to refer to these
error situations and crash to refer to the abortion of execution.
Thus, a runtime correctness tool for MPI must detect an MPI
usage error in the presence of failures. A simple solution to this
challenge is a correctness analysis that occurs in the critical
path of the application, i.e., that detects an MPI usage error
before it can cause a failure. Such an analysis comes with a
severe performance and scalability penality for error situations
that require information from multiple processes. The situation
in Figure 1 is one such example where a correctness tool
needs to combine information from rank 0 and at least one
further rank to reveal the defect. To overcome this situation
and combine failure tolerance with an efficient and scalable
correctness analysis we:

• Highlight and compare solutions to handle failures,
• Select and implement a solution that uses multiple com-

munication mediums while it retains a high bandwidth,
• Provide methods to both enable buffering (high bandwith)

communication in a TBON (tree-based overlay network)
tool and to shut down a tool after a failure, and

• Study the effectiveness and the performance impact of
our approach in a prototype implementation with the
correctness tool MUST.

Particularly, our solution to use multiple communication
mediums is not only applicable to TBON-based tools, but
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Figure 1. MPI usage error that can cause an application failure.

rather to any runtime tool. The methods to handle buffering
and shutdown, then detail extensions to this approach that are
applicable to TBON-based tools. We detail the problem of
failures in runtime (and TBON) tools in Section II. Afterwards,
we compare different failure handling solutions in Section III
and highlight the approach that we selected for implementation
in Section IV. Section V then details the TBON methods
that enable the use of buffering communication (for bandwith
efficiency) in the presence of failures along with a method
to shut down the tool. A study with a complex and widely
used benchmark for MPI then analyzes the performance impact
and the applicability of our approach in Section VI. Finally,
Section VII compares our approach and methods to related
work.

II. TBON TOOLS FOR MPI AND FAILURES

The runtime tool MUST targets low overhead and a high
scalability along with deadlock detection capabilities. As a
result, it uses an offloading concept to avoid an analysis in
the critical path of the application:

• On the application processes, MUST instruments MPI
function calls and packages information on them into
events, and

• It uses additional processing elements to analyze these
events in a distributed and scalable manner.

Since correctness analyses such as deadlock detection, and tool
activities such as logging MPI errors require a global view,
MUST uses the TBON concept [3]: Events travel through a
tree network whose root can gather global information and
whose intermediate layers provide hierarchical event process-
ing capabilities. Figure 2(a) illustrates a TBON for the four
application processes from the example defect in Figure 1.
The illustration represents the ranks as nodes with labels 0–
3, the root of the TBON as a node with the label T2,0 (first
node in the third layer), and two nodes of an intermediate
layer with labels T1,0 and T1,1. The arcs between the nodes
highlight the communication links. In the case of MUST, the
usual event flow is from the application processes towards the
root of the TBON, e.g., rank 0 would forward its events to
T1,0. The Figure highlights events e0–e3 that shall represent
information for the MPI_Reduce operations from Figure 1.
Thus, node T1,0 would perceive information on events e0 and
e1, i.e., on the reduction operations of the first two ranks. Node
T1,1 perceives information for events e2 and e3, while the root
perceives information on all events. This distribution of the
events highlights that both nodes T1,0 and T2,0 can detect the
MPI usage error, but that it can not be detected directly on
the application processes. This situation highlights the overall
setting in which we consider failures on application processes.
However, this offloading setting is not unique to MUST but
reflects the operation mode of other MPI correctness tools
(e.g., ISP [4]). Also, debugging tools (e.g., STAT [5]) and
performance analysis approaches (e.g., Periscope [6]) process
events in TBONs and could benefit from application failure
handling schemes.

MUST analyzes all MPI function invocations for their
correctness. Its communication within the TBON requires high
bandwidth and/or low latency (depending on the use case)
since communication operations can be frequent and their anal-
ysis expensive. Additionally, the maintenance and development
of portable TBON services is challenging. As a consequence,
MUST utilizes the tool infrastructure GTI [7] that provides
TBON services. GTI provides a plugin mechanism that enables
support for multiple communication mediums. We use the term
communication protocol to refer to a communication medium
plugin. GTI’s primary communication protocol for MPI tools
is a communicator virtualization technique [8] separating the
initial MPI COMM WORLD communicator to an application
world communicator and tool processes; this approach utilizes
MPI communication operations. This allows MUST to use
the highly optimized communication capabilies of most HPC
systems, without the use of restricted bandwidth I/O nodes [9].
In addition, GTI provides a flexible choice in communi-
cation timing. A plugin mechanism allows flexible choices
between so called communication strategies. A strategy can
pass new events immediately to a communication protocol
for low latency communication or it can aggregate multiple
events into larger continuous buffers for bandwidth efficient
communication. Figure 2(b) illustrates common communica-
tion choices for MUST. GTI allows a tool to use specific
protocol-strategy pairs between individual hierarchy layers
where MUST commonly uses an MPI-based communication
protocol and a bandwidth efficient (buffered) strategy between
all hierarchy layers.

Figure 3 illustrates the issues that arise for such a com-
munication setting if failures occur on an application process.
Assume that the error situation in Figure 1 causes a failure
on rank 0, due to the use of an incorrect MPI datatype. The
figure sketches the processing within rank 0 and the TBON
node T1,0 as a sequence diagram. MUST would intercept the
MPI_Reduce invocation on rank 0, forward an event to T1,0,
and then invoke the actual MPI operation (PMPI_Reduce).
The communication of the event is asynchronous and the
default communication selection in MUST returns the control
flow to rank 0 before the event arrives on T1,0. The illustrated
application failure that occurs when rank 0 issues the actual
MPI operation has the following consequences in MUST’s
default setup:

• Since the failure occurs within MPI, the tool can’t rely
on the asynchronous event communication to finish, as it
uses the MPI implementation that is now in an undefined
state,

• The communication may not even be initiated yet due to
the buffering communication strategy, and

• The failure on rank 0 can trigger timeouts in the MPI
implementation that cause a global abort of all MPI
processes, i.e., also of the TBON nodes (due to GTI’s MPI
communicator virtualization all application processes and
all TBON nodes represent one application).
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Figure 2. Illustration of a TBON-based runtime correctness tool for the error situation of Figure 1 (e0–e3 represent the MPI_Reduce operations of processes
0–3).
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Figure 3. Application failure (within MPI) and asynchronous processing in a TBON for the runtime correctness use case.

A crash handling scheme for runtime MPI tools such as
MUST (with or without a TBON) must overcome these deficits
to allow a tool to analyze all events that occured prior to
a failure. For the situation in Figure 3, a mechanism should
ensure that T1,0 can receive event e0, analyze it and any other
event (e1) that the tool needs to report the MPI usage error.

III. CRASH HANDLING STRATEGIES

An application crash handling scheme for an offloading-
based runtime tool must satisfy the following requirements:

A) (Information) Avoid the loss of event information,
B) (Continuation) Ensure that all tool analysis can continue,

and
C) (Communication) Existing event information can still be

communicated within the tool.

A common approach to meet these goals is an event
analysis in the critical path. This approach ensures that analysis
finishes before a crash occurs. Such an approach can cause
high tool overheads and limit scalability at the same time.
More efficient approaches allow some degree of asynchronous
communication or processing by using specific failure handling
mechanism.

A. Synchronous Communication

The purely synchronous technique handles an application
crash by communicating and analyzing all events in the critical
path: As to avoid loss of information, a tool immediately
processes events when they occur. Thus, when a tool perceives
a new event, it returns the control flow only after it finished all
event processing. When an application crash occurs, the tool
already analyzed all exisiting events and thus trivially meets
Requirements A-C.

The event handling in Figure 3 underlines the neces-
sary steps to enforce the purely synchronous handling. The
event communication (communicateEvent) and the event
processing on T1,0 must complete before rank 0 issues
PMPI_Reduce. This requires an acknowledgement mecha-
nism that provides rank 0 with information on when T1,0—and
potentially further TBON nodes—processed the new event. In
the case of MUST, any MPI communication call can cause a
crash. Thus, before an application process could issue an MPI
operation, the tool needs to finish its correctness analysis for
the operation in question. Correctness analyses like deadlock
analysis require complex communications within the TBON
and can spread over multiple hierarchy levels. An acknowl-



edgement mechanism that ensures that event processing occurs
in the critical path would introduce long processing delays
for MUST, thus causing severe tool overheads. Additionally,
providing feedback when the analysis of an event is finished
within the TBON in a manner that does not introduce deadlock
is challenging.

As a consequence, existing tools such as Marmot [10]
employ this strategy, but it causes high overheads and complex
interactions for a TBON-based tool.

The synchronous communication technique weakens the
restrictions of the previous scheme in that it only communi-
cates in the critical path of the application, but processes events
asynchronously. Additionally, only the application layer must
use synchronous communication, while all remaining layers
can utilize asynchronous communication. In the example of
Figure 3, this requires that rank 0 only continues its execution
after communicateEvent transfered all event information
to T1,0. In contrast to the first strategy, rank 0 does not need to
wait until T1,0 and any other TBON nodes analyzed the event.
This decreases the amount of necessary synchronization. Since
application processes transfer event data first, this scheme
immediately satisfies Requirement A (information). However,
event processing may still be ongoing when a crash occurs.
Thus, mechanisms or restrictions in the tool must ensure
Requirements B and C (continuation and communication).
Thus, we employ the following assumptions for our tool:

I) A crash only occurs on the application processes;
II) The application processes only create events, but never

receive any events; and
III) A crashed application process does not:

a) Cause crashes of higher level TBON nodes, nor does
it

b) Impact communication on other TBON layers.

The first two assumptions are necessary since a crashed
application process will not be able to receive and process any
outstanding events. Thus, we can meet Requirements B and C
only if application processes do not need to receive events.
Additionally, we restrict crashes to application processes to
avoid the need for crash recovery of tool nodes in the TBON.
These first two assumptions apply to MPI correctness tools
such as MUST and do not limit its functionality. Tools that
offload events from the application processes commonly try to
avoid communication towards application processes, due to the
resulting control flow impact, and if so usually employ extra
threads on the application processes.

Assumption I can become unsatisfactory in a failure prone
environment that regularly causes failures on non-application
TBON nodes. Existing concepts for TBON tools [11] provide
an approach to extend failure handling capabilities to these
TBON nodes as well.

Assumption IIIa ensures that the crash handling technique
satisfies Requirement B. This assumption usually requires
specific mechanisms—details on the MUST implementation
follow—since most MPI implementations recognize situations
in which an MPI process crashed. If so, they usually abort all
other processes, thus, causing an indirect abort (crash) for other
TBON nodes. Assumption IIIb requires that if an application
process crashes, it does not impact communication between

TBON nodes of higher hierarchy layers, thus, guaranteeing Re-
quirement C. In the example of Figure 2(a), if Assumption IIIb
holds, a crash on rank 0 should not impact communication
between T1,0 and T2,0. As long as a tool purely employs MPI
communication, this assumption may not hold for all types of
failures nor for all MPI implementations.

This second strategy decreases the performance impact of
the crash handling scheme, but guaranteeing Assumption IIIb
is non-trivial as long as a tool purely relies on MPI commu-
nication. Additionally, the communication in the critical path
of the application can still cause noticable overheads.

B. Asynchronous Communication

The completely asynchronous technique extends the
previous technique to both remove the need for synchronous
communication and to minimize the communication system
impact of a crashed application process (Assumption IIIb).
Since an MPI communication related crash on an application
process forbids the asynchronous use of MPI to transfer events
to other TBON nodes, we must rely on a second (alternative)
communication medium. Figure 2(c) highlights this for GTI
where we use a shared memory communication protocol
between the application layer and the first TBON layer. All
remaining layers can still employ MPI communication. In
the case of the crash situation of Figure 3 we would use
asynchronous (but non-MPI) communication to implement
communicateEvent and issue PMPI_Reduce while the
communication and the event analysis is still outstanding. This
approach reduces the performance impact of the crash handling
scheme drastically, but relies on an additional assumption:

IV) A crashed process can complete asynchronous commu-
nication on the alternative communication medium.

Besides the performance improvement from the asyn-
chronous communication, the alternative medium decouples
the application layer from the remaining tool layers, i.e.,
no application process communicates with a non-application
process via MPI. This property impacts the feasibility of As-
sumption IIIb, since no outstanding MPI communication will
exist between an application process and any non-application
node.

An application failure has additional impact if a tool uses
buffering communication as for MUST. In that situation, once
a failure occurs, the tool must forward all events and avoid
future buffering. Section V details how we notify all TBON
nodes of a failure at an application process to achieve this.

C. Alternate Communication Means

There are two basic approaches to integrate an alternate
communication system:

• Swap the communication means after a failure occured,
or

• use the alternate communication system from the begin-
ning

Swapping the communication means after a failure occured
has the advantage that we benefit from highly optimized
MPI communication while the program works well and only
employ the fallback if a failure occurs. However this approach



comes with drawbacks: During a failure we must propagate the
information that a communication swap is necessary to other
processes. For that we must not use the default communication
means. As a result, we have to initialize and poll on the
alternative communication at all times (before a failure occurs).
More critical are cases where a process tries to use a the default
communication means while it is in an invalid state, due to a
failure and before a notification arrives. Such a communication
attempt could lead to a failure on non-application processes.

D. Implementation in MUST

We implement the completely asynchronous crash handling
technique in MUST and rely on a shared memory communi-
cation as the alternative communication medium, which we
describe in Section IV. Our use case satisfies Assumption II
and we limit our crash handling to application processes
(Assumption I), where future extensions could add failure
recovery for intermediate TBON nodes. In order to satisfy
Assumptions IIIa and IV, we must catch crash situations.
This serves to flush all messages that are in transit on the
alternative communication protocol and to avoid that the MPI
implementation aborts the whole application. Note that we
can not completely guarantee Assumptions IV, if a malicious
memory access yields an inconsistent state for our alternative
communication means or a component that it uses, then an
attempt to communicate with this means could fail. However,
a small subset of failures should yield such a situation.

We catch error situations the following two kinds of fail-
ures: Errors reported by the MPI library and errors detected by
the operating system, which result in a signal, e.g., SIGSEGV
for a malicious memory access. To catch MPI errors we
register an error handler with the MPI library. For signals from
the operating system we register a signal handler. Depending
on the operating system, the programming paradigm of the
application, and the runtime system, further types of signals
or error handlers can indicate a failure. The above selection of
handlers allows us to catch crash situations in practice on var-
ious Linux clusters. We propose a try-catch-throw mechanism
based on setjmp and longjmp functions of POSIX to guard
call of MPI functions. This allows us to distinguish a failure
that results from an incorrect call to the MPI library from
errors within the application. The output of MUST includes
function call stacks for detected MPI usage errors. The try-
catch-throw mechanism restores a valid function call stack, so
we may include the failure information and the stack trace to
the report.

Finally, as stated above, we rely on the MPI implemen-
tation to guarantee Assumption IIIb. The alternative commu-
nication protocol ensures that no outstanding communications
exist between application processes and other non-application
nodes of the TBON. In practice we find that the MPI imple-
mentations that we investigated—MVAPICH, Open MPI, and
BullXMPI—satisfy our assumption.

IV. SHARED MEMORY COMMUNICATION PROTOCOL

As introduced in Section II, our tool infrastructure GTI
uses MPI as its default communication means. The completely
asynchronous crash handling technique requires that we do not
rely on MPI for communication past a failure.
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Many of todays computing clusters are built with SMP
nodes that contain a number of computing cores with shared
memory. We exploit this architecture by placing each first level
tool proces and its connected application processes onto one
compute node, such that these processes have available shared
memory. We then provide a shared memory implementation of
the GTI protocol interface based on System V IPC (inter pro-
cess communication). This protocol is used for communication
between the application layer l0 and the first non-application
layer l1, as illustrated in Figure 2(c).

System V IPC provides three basic paradigms:

• Message Queues
• Semaphores
• Shared Memory

Message queues are typically limited by the operating
system in space to a few kBytes and in count to a few hundred
or thousand messages; there is no explicit message count limit,
but an implicit limit is given by the space limit. Message
queues provide a convenient way to implement consistent send
and receive transfers with atomic read and write operations. We
use two message queues for each communication channel, one
for each direction; a channel is equal to an egde in the TBON.

Since message queues are limited in space we use shared
memory chunks to transmit larger messages. For shared mem-
ory chunks there is a limit in count given by the operating
system—typically a few thousand—while space is limited by
system memory only. For large messages we allocate a shared
memory chunk first and copy the payload into the chunk.
Afterwards, we transfer a message (via the message queue) to
pass the reference to the receiver side. Thus, we need no further
explicit locking mechanism (semaphores) while we preserve
message order at the same time.

Figure 4 compares throughputs for direct communication
via messages queues (Message Queue in the figure) and for
explicit shared memory allocation with passing a reference
through the message queues (Shared Memory in the figure).
The former communication type provides two orders of mag-
nitudes higher bandwidths and is comparable to bandwidths of
an Open MPI implementation.

Therefore we want to set the size limit for tiny messages as
high as possible. The kernels run on a dual socket Intel Xeon
5675 with both processes pinned to one socket.



We activate our communication protocols when we transfer
a new event. Since the number of outstanding message queue
transfers is limited, we can encounter a try again error when
we attempt to add a new message to the queue. As a result,
we let communication strategies decide how to handle such a
situation. Our default implementation retries sending until the
receiver side drained enough events from the queue, such that
the new message fits. For single threaded implementations the
pushing is necessary as retaining the message could lead to
deadlocks. Other implementations could use extra threads to
reduce the performance impact of such a waiting situation. In
summary we need to be able to buffer several messages in the
message queue to do asynchronous communication and reach
the queue size limit very rarely.

There are several ways to initialize the shared memory
communication. The simple way is to use external specified
knowledge about the partitioning of the used nodes, especially
the number of processes within one shared memory domain.
For MPI applications with equally distributed ranks the parti-
tioning may be done based on rank number. One rank within
a shared memory domain is used as tool rank, the other ranks
are application ranks.

For many use cases there is no guarantee for a uniform
distribution of ranks with equally-sized shared memory do-
mains. We propose a protocol to achieve the detection of
the shared memory domains and determine the tool process
for the domains: Each process tries to create a message
queue with a common key (e.g., an exported environment
variable) that is unique for the invocation. The first process
succeeds to create the message queue and becomes the leading
tool process of the shared memory domain. The remaining
processes detect that the queue already exists; thus they register
with the tool process and open a communication channel with
the tool process. The tool processes explore the distribution
of the processes across the shared memory domains; they
determine the total process count and verify that all processes
registered to finish the registration stage. To build the TBON
we need higher level tool processes, these are recruited from
the smallest shared memory domains. Shared memory domains
larger than a given limit get split into partitions with new first
layer tool processes. At the end of the tree building step we
assure that we have enough processes to provide a TBON with
the required properties.

V. BUFFERING AND SHUTDOWN

If an application crash is handled, a runtime tool must:

• Ensure that all event buffering is aborted to assure that
all events will be processed, and

• Provide a mechanism to shut down the tool and the
application as gracefully as possible.

A. Buffering

Typical configurations of MUST—Figure 2(b)—rely on a
communication strategy that aggregates multiple events into
larger continuous buffers. This technique allows MUST to
communicate bandwidth efficient and decreases its overhead
in practice. Such communication strategies buffer events until
either a larger buffer is full or the application issues its own
shutdown. If an application failure occurs, such an application

provided shutdown event is missing. Thus, communication
strategies potentially buffer events indefinitely and thus vio-
late Restriction C. An immediate solution is the usage of a
communication strategy that does not use event buffering, but
this solutions would increase tool overheads.

MUST layouts that support application crash handling
still use buffering communication strategies—Figure 2(c)—
between non-application layers. We then use additional events
to turn off event buffering on all non-application nodes in case
of an application failure:

• Crashed application processes inject a panic event and
send it with their alternative communication medium
towards the root,

• TBON nodes that receive a panic or notifyPanic event
disable all event buffering and flush their strategies, and

• When the root receives the first panic event it broadcasts
a notifyPanic event towards all non-application nodes in
the TBON.

This handling efficiently notifies all non-application nodes
that an application failure occured and disables event buffering
as a result. A filter can remove redundant panic events on all
layers of the TBON to avoid situations in which the root must
receive and process high numbers of such events. Thus, TBON
layers can use buffering communication. The only exception is
the connection between the application processes and the first
tool layer, since we avoid communication towards application
processes (Assumption II). This layer must use an immediate
communication stategy as a result, but this communication may
still be asynchronous of course.

B. Shutdown

Assumption II from Section III challenges tool shutdown
when failures occur. The tool must process all available events,
but without communication to the application processes. With-
out such communication a tool can’t guarantee that processes
will not generate additional events. As a result, we propose
a heuristic approach to handle tool shutdown. Figure 5 illus-
trates necessary communication within the TBON to vote for
a shutdown: The beforementioned panic events initiate this
alternative shutdown approach. Once first layer tool processes
received an notifyPanic event, they start a timeout that they
reset whenever they receive a new event. Once a tool process
reaches its timeout it injects a ack-shutdown event that it sends
towards the root of the TBON. This event contains a count of
received, processed, and sent events. Each TBON layer adds
up the numbers in these events and adds its own values. If the
numbers match when the root receives the resulting sums, it
terminates the tool with a shutdown event that it broadcasts
throughout the TBON.

VI. APPLICABILITY

We use the Sierra cluster at the Lawrence Livermore
National Laboratory to execute comparative measurements that
evaluate the overheads of the purely asynchronous crash han-
dling technique implemented in MUST. This system consists of
1,944 nodes where each node features two 6 core Xeon 5660
processors and 24 GB of main memory. The system uses a
QDR InfiniBand interconnect.
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We run the SPEC MPI2007 [12] (v2.0) benchmark with the
lref data set to measure tool overheads of MUST for 256, 512,
1,024, and 2,048 processes. The MUST version [2] we use
includes all of its correctness checks, except for its deadlock
detection. We compare the following configurations:

• Reference run with 12 processes per node (ref12);
• Reference run with 11 processes per node (ref11);
• Tool attached with no crash handling mechanism active

(NoHandling);
• Tool attached with crash handling, but without buffering

(SM-NoBuffering); and
• Tool attached with crash handling and with buffering (SM-

Buffering).

We use the tool version NoHandling to compare runs with
our crash handling technique to a well tested and optimized
baseline that purely relies on MPI communication and buffer-
ing communication strategies (layouts as in Figure 2(b)). The
tool version SM-NoBuffering uses shared memory commu-

nication, but only uses immediate communication strategies,
i.e., it does not require the panic handling technique from
Section V-A. The tool version SM-Buffering then uses shared
memory communication and the panic handling scheme in
order to employ aggregating communication strategies (layouts
as in Figure 2(c)). As a result, a performance comparison
between the latter two tool versions highlights the advantages
of our panic handling.

We use one run for each application scale, tool config-
uration, and application in a production system, i.e., with no
chances for a compact node allocation and potential noise from
neighboring jobs [13]. Thus, statistical significance of single
measurements is limited, but should suffice for a performance
tendency across all runs. The application 132.zeusmp runs
without failure for 1,024 and 2,048 processes, but internal
application verification fails due to an effect that we want to
study in the future. As a result, we use a wallclock runtime
for these runs instead of the benchmark provided result times.

Figure 6 compares tool overheads with 2,048 processes
for the different tool configurations. The charts use “relative
overhead” as a metric that compares the runtime with a tool
version to either the minimal runtime of the two reference runs;
or to the runtime of another tool version. As an example, a
value of 0.1 indicates that the application runs 10% longer
with the specific version of the tool in comparison to either
the reference runs or another tool version. The overall tendency
shows the positive impact of event buffering. On the other hand
the cost for crash handling is quite low.

Without the presence of the tool, an application can use 12
MPI processes per compute node. For the shared memory
communication system that we use for our crash handling, we
place 11 application processes and one tool process onto each
compute node. As a result, we use reference runs with 11 and
12 application processes and use the lower reference runtime
in our runtime difference calculation for the tool versions.
Figure 7(a) highlights that 11 processes per compute node does
not increase runtimes for the applications, so the execution
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Figure 7. Detailed comparison of overhead measurements

is not disturbed by this partitioning. In our measurements
we observed runtime increases of up to 30% if we use 12
cores instead of 11 cores per compute node. Consequently we
decided to base our overhead measurements on the minimal
reference run of 11 and 12 processes per compute node.
Besides the increases in application runtime, our tool configu-
rations use additional compute cores as tool processes. Thus,
our tool runs consume about 10% extra compute cores with
the configurations that we use here.

Figure 7(b) highlights that all three tool versions exhibit
noticeable overheads (more than 15% runtime increase) for the
applications 128.GAPgeofem, 121.pop2, and 143.dleslie. These
applications issue MPI operations at a high rate that saturates
the processing capabilities of our tool. Since SPEC MPI2007 is
a strong scaling benchmark, the event rate increases with scale,
and thus, the overhead of the tool versions. TBON layouts with
additional tool processes—e.g., a tool process per 4 application
processes—can reduce these overheads in practice.

Figure 7(c) details the overhead differences between the
NoHandling tool version and the SM-Buffering version, i.e., the
performance impact of our crash handling technique. The chart
uses the runtime of the former version as the reference and
details runtime increases/decreases for the tool version with
crash handling. These values detail the cost of using shared
memory instead of MPI communication as well as using an
immediate rather than a buffering communication between the
application layer and the first tool layer. We observe additional
overhead with SM-Buffering for applications with high event
rates. For the other cases, we observe a small decrease in
runtime. As Figure 4 illustrates, the shared memory communi-
cation may compete with MPI communication if the receiver

side promptly collects messages. When a tool process has a
high load, collection delays can cause blocked message queues.
The comparison in Figure 7(c) highlights a maximum runtime
increase of 58% for the application 143.dleslie with 2,048
processes. With 4% in average, the increase in application
runtime for our tool version with crash handling (compared
to our reference tool version) is almost neglectable.

Figure 7(d) illustrates that the SM-NoBuffering tool version
yields up to 60% longer runtimes than the SM-Buffering
version. Again, we see such overhead increases in cases which
saturized the processing capabilities of the tool processes.
This comparison demonstrates the huge impact of the panic
handling scheme from Section V-A.

Finally, the benchmark applications of SPEC MPI2007 are
well tested and cause no MPI related failures on Sierra. Thus,
we used a test suite of incorrect synthetic MPI examples to
evaluate whether our application crash handling scheme allows
us to detect MPI usage errors that cause failures on application
processes. Additionally, to test our approach at scale and for
more complex applications, we inject MPI usage errors that
cause application crashes for three of the SPEC MPI2007
applications at 2,048 processes:

• The use of an incorrect MPI communicator into the 100th
MPI_Isend invocation of rank 1,025 for 121.pop2,

• The use of an invalid communication buffer and count in
the invocation of the 100th MPI_Recv of rank 777 for
137.lu, and

• The use of an incorrect MPI reduction operation for the
first MPI_Allreduce of rank 1 for 147.l2wrf2.

The first two defects cause an application crash that triggers



a signal handler while the third triggers an MPI error handler.
The tool version SM-Buffering successfully catches all three
MPI usage errors and reports them in its error reports, even in
the presence of an application failure. Especially the second
and third type of defect stress our approach, since MUST can
not locally detect these errors on the application processes, but
only in its TBON hierarchy.

VII. RELATED WORK

Our work is both related and orthogonal to efforts for
fault tolerant MPI implementations. Examples for fault tolerant
MPI implementations are FT-MPI [14], FT/MPI [15], and
P2P-MPI [16]. These approaches aim at failure situations
where a computing unit gets disconnected from the application
network, either by hardware fault or by network problems.
The assumption is that the application execution is flawless. A
fault tolerant MPI implementation typically aims to carefully
remove the crashed rank (potentially losing information) from
the application and then disables all communication to the
crashed rank. FT/MPI implements a kind of checkpoint and
restart mechanism for the crashed rank. P2P-MPI relies on
redundant processing elements; the execution survives as long
as not all replications of a rank died. FT-MPI leaves the task of
data recovery to the application. Such mechanisms support our
crash handling scheme with guarantees for Assumptions IIIa
and IIIb. Where we currently rely on disjoint communication
along with handlers that avoid a global application abort. At
the same time, fault tolerant MPI implementations accept a
loss of information on the application processes, whereas we
must preserve all relevant events of crashed ranks. Thus, these
approaches support an implementation of our approach, but
they do not subsume it.

Marmot [10] is an MPI runtime checker written in C++
that covers MPI-1.2 and parts of MPI-2. The tool uses a
single extra tool process as centralized “DebugServer” and
implements the purely synchronous technique that we describe
in Section III-A. For each intercepted MPI function call, Mar-
mot performs two steps before executing the actual MPI call:
first, it checks for correctness of the MPI call locally; second,
it sends information on this MPI call to the DebugServer.
The application process continues its execution only after it
receives a ready-message from the DebugServer. As a result,
it is guaranteed that all non-local checks executed at the
DebugServer, as well as all local, are finished before the actual
MPI call is issued. This synchronous checking ensures that all
defects are reported before they can manifest in an application
crash. In summary Marmot handles application failures in a
platform and system indepenendent manner, but both suffers
a scalability limitation from its centralized infrastructure as
well as a performance penality from its communication and
processing in the critical path.

The MPI correctness checker Umpire is written in C and
has its focus on non-local MPI checks. It executes both
a deadlock detection and type matching on a central man-
ager. The first difference to Marmot is that Umpire spawns
extra threads for each MPI process. Particularly, it spawns
an “outfielder” thread as a communication thread on each
process, as well as a “manager” thread on one process (usu-
ally process 0). The manager executes all non-local MPI
checks and can be compared to Marmot’s DebugServer. The

outfielder thread asynchronously transfers event information
to the manager. Application processes transfer MPI event
information to their outfielder threads through process local
shared memory, i.e., an alternative communication means.
Outfielder threads aggregate event information and send it to
the manager thread when a buffer limit is exceeded or when
a timeout occurs. Depending on the system architecture, this
communication is implemented with either MPI or System
V IPC. Our approach in Section IV is inspired by this
undocumented communication system. Umpire uses MPI for
communication on distributed memory systems and requires
an MPI implementation that supports the highest level of
thread support [1] (MPI_THREAD_MULTIPLE). It uses MPI
to communicate between the outfielder threads on all processes
and the single manager thread. Umpire’s communication sys-
tem is designed to incur low runtime overhead, which is
achieved with the asynchronous transfer of events to the central
manager. Due to the asynchronous design, the central manager
is no longer a bottleneck for communication. With respect to
crash safety, Umpire registers signal handlers to fetch signals
from operating system and MPI errors. When a failure occurs
the application thread triggers the outfielder thread to flush
buffered events. Umpire relies on the assumption that—at
least outgoing—MPI communication is available for outfielder
threads in case of a failure. Since these threads share the MPI
implementation with an application process, this assumption
may not hold if the implementation is in an inconsistent state
due to a failure. In summary, Umpire’s handling inspired
our approach, but we do not require MPI implementations
that support MPI_THREAD_MULTIPLE. Additionally, our
assumption on independent MPI communication partitions
(Assumption IIIb) is less restrictive then Umpire’s assumption
for communication on additional threads after a failure. The
single manager thread of Umpire limits performance since it
must analyze events from all processes. Further, performance
tests with Umpire show that the efficiency of the asynchronous
transfer depends highly on the interleaving of the communi-
cation of the application and the MPI communication of the
outfielder threads [17].

The TBON infrastructure MRNet proposes state compen-
sation [11] for failure recovery. The goal of the approach is
that aggregating analyses within the TBON survive a TBON
node failure without a loss of data. When a failure occurs, a
recovery takes place that first, afterwards execution continues
with a new TBON layout. The approach in MRNet specifically
excludes failures on application processes and notes the need
for failure handling on application processes. As a result, our
approach complements the state compensation technique of
MRNet and could provide both application and TBON node
failure handling for MRNet or GTI based tools.

Debuggers such as Totalview [18] and DDT [19] typically
fetch signals from the operating system and register break-
points to routines that abort MPI applications, so the user
is able to investigate error situations. The parallel debugger
DDT uses a TBON infrastructure that builds on TCP as
communication system and is independent from the applica-
tions MPI communication system. This TBON infrastructure
is used to collect information to be presented on the graphical
user interface, as well as to send commands to application
processes. In summary, debuggers use similar techniques (er-
ror/signal handlers and alternative communication means) as in



our application crash handling. At the same time, commercial
parallel debugging approaches with TBON infrastructures are
proprietary and do not document their failure handling in
detail. Additionally, the event rates that debuggers consider
are far lower than our observation of all MPI communication
operations, which requires an approach that provides high
bandwidth communication.

VIII. CONCLUSIONS

We provided a categorization of approaches to handle
application crashes in runtime analysis tools:

• A purely synchronous technique,
• A synchronous communication technique, and
• A completely asynchronous technique.

The latter only operates with techniques and use cases that
satisfy several assumptions, but also provides lower overheads
and better scalability. For an MPI tool with a TBON hierarchy,
this requires an alternative communication system to decouple
application communication from tool internal communication.
Additionally, we propose a shutdown protocol to integrate
buffering to the tool internal communication and verified the
performance impact of this technique. Benchmark measure-
ments of our implementation of the completely asynchronous
technique highlight low overheads in most cases resulting in
an avarage runtime increase of 4% for our MPI correctness
tool. Moderate runtime increases of up to 60% occur for
applications with very high event rates and identify a potential
for future optimizations in our alternative communication
means implementation. We demonstrated the applicability of
our approach with up to 2,048 application processes; our
implementation was able to detect MPI usage errors for three
different injected failures at this scale.
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